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bstract

This work attempts to bridge laboratory and real-life battery testing data with a comprehensive analysis to provide a coherent approach for a

ealistic model to simulate battery performance, including life prediction. From electric vehicle field-testing results, we explain how to handle
eal-life data through driving cycle analysis to establish a scheme of “building blocks” that can be validated by test results obtained in the laboratory.

e also show that a simple battery model can be built upon laboratory test data and validated by real-life duty cycles, therefore deriving a more
ealistic understanding and prediction of battery performance.

2007 Elsevier B.V. All rights reserved.
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. Introduction

To date, assessment and understanding of battery perfor-
ance primarily rely on testing in the laboratories. Very limited

ffort has been put into field testing with detailed data collection
nd analysis. The reason that the field-testing approach was not
avored is because that such testing is costly, labor-intensive,
nd virtually no control. On the other hand, the difficulties in
onducting field testing and analysis hamper the development
f suitable methodologies to gain experiences in real life for a
ractical understanding of battery performance. Thus, it is no
urprise that experiences from field tests to date are mostly lim-
ted to statistical in nature [1–4], presenting limited value for
se in technical improvements of battery design or operation.

In pursuing better understanding of battery performance in
eal life, we often come across three major challenges:

. Availability of adequate test protocols and analytic tools to
understand the data collected in the laboratory for life pre-
diction.

. Availability of viable battery modeling and simulation tools

to extend our laboratory experiences to real-life duty cycles;
therefore, we can predict battery performance and life in more
complex and less controlled settings.

∗ Corresponding author. Tel.: +1 808 956 2339; fax: +1 808 956 2336.
E-mail address: bliaw@hawaii.edu (B.Y. Liaw).
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. Capability to develop suitable protocols and analysis tech-
niques to allow us collect and analyze data collected in the
real-life operating conditions to derive battery’s performance
characteristics in relation to its usage.

In this work, we propose a roadmap delineating how to
ddress these challenges and to enhance more realistic under-
tanding of battery performance in real life. Some of the critical
teps involved are listed as follows:

. Collect relevant data in the field operation.

. Formulate a systematic approach to analyze duty cycles
according to their operating conditions and usage.

. Analyze performance characteristics of the batteries.

. Derive correlation between duty cycles and performance
characteristics.

. Develop a predictive model and simulation capability to
allow prediction of battery performance and life based on
duty cycles in real-life operation.

Before we describe the details of how to pursue this approach,
t is quite important to point out the difficulty in formulating a
ystematic approach to analyze driving or duty cycles. First, it
s important to realize that no well-documented methodology

o conduct driving cycle analysis has been accepted to date.
he current approach to study driving cycle is conceptualized
n characterizing the driving conditions for a specific type of
oad (facility type) and situation (level of service), such as in

mailto:bliaw@hawaii.edu
dx.doi.org/10.1016/j.jpowsour.2007.06.237
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city, highway, or urban environment to derive the classifica-
ion of driving patterns for use in the industry and government,
or example, for urban or emission studies. This conventional
pproach is however very difficult to use in driving cycle analy-
is. For instance, on a jammed highway with bumper-to-bumper
raffic, the driving would be more like on a downtown street
han on highway. To overcome this difficulty, we took a differ-
nt approach using a fuzzy logic pattern recognition (FL-PR)
echnique, which is based on a typical perception of a “reason-
ble assembly” (as expressed with a fuzzy membership function)
f a driving pattern that corresponds to a driving on a specific
oad type. Using this linguistic, qualitative expression method
o classify each small section of a driving cycle enables us to
lassify driving patterns based on driving conditions, instead of
oad type and level of service. This approach makes the driving
ycle analysis possible on a consistent, systematic manner. This
s also applicable for duty cycle analysis.

In 2001–2003, we have evaluated a fleet of 15 Hyundai Santa
e electric sport utility vehicles (e-SUV). We use the data col-

ected on board in field-testing as a model system to illustrate this
pproach via the analyses of driving and duty cycles to reveal
he performance characteristics of the vehicle and battery. We
how how real-life data were collected and analyzed, perfor-
ance profiles characterized, and useful correlations derived

or construction of a predictive model of battery performance,
otentially suitable for prediction of battery service life. Fig. 1
resents an overview of the steps involved in the development
f a battery life predictive tool that can incorporate real-life data

nd analysis. We show that it is beneficial to have field and
aboratory testing in parallel. This two-prone approach is based
pon a “building block” concept that connects the laboratory and
eal-life data. In this concept, we analyze driving cycle and duty
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p

Fig. 1. Schematic of life prediction approa
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ycle by breaking them down to smaller blocks of well defined
haracteristics. These “building blocks,” which we call “driving
ulses” and “power pulses,” respectively, for driving cycle and
uty cycle, allow us to construct arbitrary driving cycles and
uty cycles that can be used in laboratory testing and computer
imulation. Through the analysis of the correspondence between
riving pulses and power pulses, we can sort out the relationship
f vehicle driving cycle versus battery duty cycle. Therefore, the
tress imposed on the battery from the duty cycle can be corre-
ated with the vehicle usage based on the driving cycle. This is a
ery important aspect of the building block concept that makes
he connection between performance and operating conditions.

Regarding model construction and validation, it is important
o derive a set of “universal” building blocks for driving and
uty cycle to facilitate simulation. A large population of build-
ng blocks can be generated from field testing and systematic
nalyses. A small set of representative building blocks is then
elected for validation using laboratory testing. This process
erves as the bridging instrument between laboratory and real-
ife conditions. The laboratory testing allows us to develop and
alidate a set of “universal” building blocks with performance
haracteristics characterized for vehicle and battery operation.
hese well-defined building blocks can be used as modules in the
onstruction of “well-behaved” driving and duty cycle for mod-
ling and simulation. One useful aspect of these well-behaved
riving or duty cycles is to employ them as “standard” test proto-
ols for laboratory evaluation and benchmarking. For instance,
e can use this process to characterize the associated stress fac-
ors on battery performance in cycle life testing and use them for
ife prediction. Another valuable aspect is to use these modules
o synthesize arbitrary driving or duty cycles for performance
rediction.

ch from field and laboratory testing.
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Fig. 2. Hyundai Motor Company’s Santa Fe e-SUV

. Data collection

.1. Field testing

Fifteen Santa Fe e-SUVs, each equipped with an Enova
0 kW Panther drivetrain, were built by Hyundai Motor Com-
any (HMC) in South Korea. They were delivered to Honolulu,
awaii, in July 2001 for a 2-year evaluation and road-worthy

esting administrated by the Hawaii Electric Vehicle Demonstra-
ion Project (HEVDP) office. These 15 vehicles were dispatched
o the Hickam Air Force Base (HAFB), City and County of
onolulu (C&C), Hawaiian Electric Company (HECO), and
EVDP office for field testing and operation. The vehicles on
AFB were primarily used for security and errands. Driving
n HAFB has to observe speed limits strictly. Vehicles at C&C
nd HECO were used for commute and daily business services.
hose at HEVDP were used for errands and some commutes
ccasionally. The driving profiles therefore represent a variety
f usage.

Each vehicle is equipped with an on-board data logger (see
ig. 2), which communicates with the power control unit (PCU)
nd battery management unit (BMU) on the vehicle to log data
n a second-by-second interval. Periodically, typically every 2
eeks, the data stored on the logger were transferred to a laptop

omputer and then processed to the database in the laboratory
or further analysis. Both trip and charging data were collected,
ncluding detailed data from the drivetrain and battery modules.

he data collected include more than 255,000 km and 25,000

rips. The data were used to analyze driving and duty cycles
ith the unique FL-PR approach developed in this laboratory

5–7].

i
u
o
d

Fig. 3. (a) Details of a DST schedule and (b) example of a dis
the onboard data logger used for data acquisition.

.2. Laboratory testing

For cycle life test of batteries in the laboratory, we typically
se the Dynamic Stress Test (DST) cycle as a test protocol, which
s designed to test electric vehicle battery performance under an
mulated urban driving cycle condition [8]. A DST schedule
onsists of a series of regenerative braking and discharge regi-
ens for a total of 360 s (Fig. 3a). A DST cycle comprises the

ischarge of the battery using the DST schedule repeatedly until
t is 80% or fully discharged (Fig. 3b). The battery is then fully
echarged using the algorithm provided by the manufacturer.
pon a number of DST cycles was applied (typically 50), the
attery is then subjected to a reference performance test (RPT)
esigned to characterize the battery performance and its degra-
ation through cycle life. The RPT consists of four core tests:
hree designed to determine the cell capacity under constant
urrent, constant power, and DST discharge regimes; and one
elated to the SOC-dependent peak power capability.

. Data analysis

.1. Driving and duty cycle analyses

We used a systematic approach [5–9] to conduct driving and
uty cycle analysis from the second-by-second trip data. In this
pproach, we used FL-PR techniques [5–7] to derive detailed
reakdown of driving patterns and pulsed power patterns (PPP)

n the driving and duty cycles, respectively, so the driving sched-
le for each trip can be summarized as a function of vehicle
perating time, mileage or power usage. The breakdown of the
riving schedule is based on the summary of the sequential “driv-

charge regime using the DST protocol in the cycle tests.
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the stop-and-go type identified by the fuzzy rules. For the next
400 s, the pulses are longer and the average speed is higher but
still quite moderate, which corresponds to a suburban driving
type. The highway part of this trip consists of two long driving
Fig. 4. The fuzzy logic pattern recognition (FL-PR) t

ng pulses,” which are defined as active driving periods between
wo subsequent stops. Similarly, a duty cycle can be broken
own to a time-series of “power pulses” and each power pulse is
epicted by two adjacent points in time when power consump-
ion is at the same level as the baseline (as consumed by auxiliary
ower unit). A power pulse is characterized by a set of conju-
ate parameters such as average power and energy consumed,
hich can be used to define PPP using a FL-PR technique and

lassification. The PPP can also be classified by peak power and
ts frequency of occurrence in the schedule. A duty cycle is then
xpressed by a time-series of power pulses with a composition
f PPP’s.

FL-PR interpretation provides a convenient method to clas-
ify and assign an output value (e.g., defining a driving pattern)
o each individual driving pulse between two stops based on
uzzy membership functions and rules [5–7]. The advantage of
his FL-PR approach is the ability to systematically breakdown
he trip into sections of sequential driving pulses that permit us to
ecognize a unique driving pattern associated with each driving
ulse.

In the analysis of driving pattern, we found that average speed
nd distance driven of an active driving period between the
wo sequential stops could be used for driving pattern recog-
ition. By calculating these two parameters for all the driving
ulses recorded in the database, a dispersion plot can be used
o reveal the distribution of average speed and driving distance
or all the driving pulses in the database. From such a dispersion
lot, we create a set of fuzzy rules to recognize the driving pat-

ern associated with each driving pulse. As a result, an output
uzzy number representing the driving pattern, from stop-and-
o to highway, can be assigned to each driving pulse in the
atabase.

F
d

ue used to classify driving pattern for driving cycle.

Fig. 4 presents the FL-PR inference system that was used
o classify each set of average speed and distance of a driving
ulse to a corresponding driving pattern. It should be noted that,
lthough the five driving patterns in Fig. 4 are used commonly to
ndicate the type of road a driving schedule is conducted, there
s no consensus on how to characterize them in a consistent

anner to produce a quantitative, meaningful characteristic. In
ontrast, our classification depicted in FL-PR technique is offer-
ng an interesting solution and comprehensive approach toward
his direction. We however focus on driving type classification,
hich is not necessarily associated with the road type.
Applying this FL-PR technique to driving cycles, we show

hat in Fig. 5 we can yield a breakdown of driving types in a trip,
here every driving pulse has been associated with a specific
riving pattern. For the first 200 s of this trip, the driving pulses
re short in duration and low in speed, which is consistent with
ig. 5. Driving cycle of a trip (speed vs. time curve, top) and the associated
riving pattern summary depicted by the fuzzy rules (bottom).
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Fig. 6. Distribution of driving patterns by operating locations.

ulses with high average speed. The last part of the trip is made
f shorter high speed pulses which are consistent with a suburban
riving on 2 × 2 lanes with intermittent traffic stops.

This driving pattern analysis can be applied to all the trips
n the database to yield a consistent interpretation of the driv-
ng cycle with well-defined driving pattern summary in series.
nce the entire database was properly indexed, we then began

o investigate vehicle utilization patterns, for example, at four
ifferent locations. Some detailed analysis has been reported
lsewhere [9].

Fig. 6 shows the summary of vehicle driving pattern distribu-
ion among the four locations. Despite the difficulty in mining a
arge number of very dispersive driving cycles operated by the
perators, a consistent, detailed analysis like this can reveal the
ariety of operation and utilization patterns of the fleet and the
esulting variations in energy utilization efficiencies.

The next step in the approach is to determine PPP for duty
ycles. The PPP’s are supposed to have strong implications of
attery usage, particularly in terms of stress imposed on the
attery during operation, for the assessment of degradation. To
nalyze power pulses, we employed two conjugate parameters:
n this case, the peak power of each power pulse and the number
f pulses per unit duration (such as minutes) to characterize
PP. These two parameters are supposed to be critical to battery
erformance and degradation. Therefore, the intensity of the
eak power and frequency of occurrence may define the primary
tress factor to battery performance and degradation.

The utility of PPP was explored as follows: first, we iden-

ified the peak power and occurrence frequency for all power
ulses. The distribution of the peak power with the percentage
f its appearance is summarized in Fig. 7. The figure shows
ome interesting disparity in driving habits (in conjunction with

Fig. 7. Peak power distribution by vehicle locations.
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ig. 8. Driving cycle (top), duty cycle (middle), and the associated PPP curve
bottom) determined by a fuzzy logic matrix (not shown).

he driving patterns shown in Fig. 6) among different locations;
specially for HAFB, where speed limit on the base has signifi-
ant impact on the driving pattern and PPP. Detailed discussion
n this analysis will be published elsewhere [10].

Fig. 8 presents the PPP analysis performed on the same trip
hown in Fig. 5. Interestingly, although PPP and driving pattern
ere synchronized, the information revealed by the PPP is far
ore spontaneous, complicated, and with more details than by

riving pattern. It is worth noting that PPP includes regenera-
ive braking, which is a characteristic that is not traceable in
riving pattern. However, it imposes a unique impact on battery
erformance. The spontaneous details revealed by PPP offer an
pportunity for us to analyze the impact of PPP on battery per-
ormance. There are other subtle differences between PPP and
riving pattern in the driving and duty cycle analyses; for exam-
le, from 940 to 1000 s, the slow deceleration of the vehicle
orresponds to a period where almost no power was drawn. This
ould reflect a situation in a downhill drive where the vehicle was
unning at a considerably high speed, while the consumption of
nergy is very small.

More importantly, through the characterization of driving pat-
ern and PPP, we make a connection between driving/duty cycles
nd battery stress factors, which will allow us to conduct battery
odeling and simulation in the presence of operating conditions

n real life, which may exhibit situations different from lab-
ratory test protocols. Therefore, field-testing could provide a
roader range and more complex conditions than laboratory tests
nd allow us to assess battery performance in a more complicated
etting.

The above postulation motivates us to analyze the relation-
hip between PPP and driving pattern more in depth. Fig. 9
xhibits the distribution of peak power per pulse as a function
f driving pattern, as originated from the fuzzy classification
umber. Also displayed is the mean peak power versus driving
attern as shown by the white line. In general, the mean peak
ower increases linearly with driving pattern, from stop-and-
o to highway driving type (where fuzzy classification number
1). There is a different correspondence for stop-and-go if fuzzy

lassification number <1. More profoundly, the peak power dis-
ribution along with the driving pattern exhibits a rather wide
andwidth of dispersion; in some cases, over the entire power
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Fig. 9. Dispersion curve of peak power vs. driving pattern. The white line is
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he mean peak power vs. driving pattern curve that can be used to construct a
ynthetic duty cycle from a driving cycle, either in real-life or from a hypothetic
ondition.

ange of the motor. This observation implies that the driver had
very wide spread of interactions with driving conditions. One

ndex we can use to describe this phenomenon is the disparity
f a peak power pulse from the mean value for a specific driv-
ng pattern, which may reveal the extra stress exerting on the
attery. The magnitude of this disparity can be measured as a
tress factor. For example, a peak power pulse of 55 kW can be
n aggressive driving in an urban area, but quite normal on a
ighway. Therefore, the peak power itself might not be a good
easure of the stress to the battery, but the disparity to the mean

ould.
The ultimate goal of the PPP and driving pattern analyses is

o establish a battery usage pattern (BUP), in which the stress
actor exerted on the battery can be used to assess degradation
f the battery pack. We thus developed a third set of fuzzy rules
hich use PPP and driving pattern as inputs to derive a vehicle
sage pattern (VUP), as shown in Fig. 10. This VUP allows us
o determine if a driving pulse can be characterized as degree
f aggressiveness in driving by taking into account of both the
ower draw and the driving condition.

One of the benefits of this VUP analysis is the creation of
representative battery usage schedule (ReBUS) for a specific
riving cycle. A simple example is the synthesis of a driving

ycle based on a unique combination of driving patterns and the
ssociated mean peak power as presented in Fig. 9. This syn-
hetic driving cycle can represent any specific region or a series

ig. 10. Vehicle usage pattern (VUP) based on driving pattern and PPP via a
uzzy rule interpretation.
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Fig. 11. Example of a series of aggressive city driving.

f hypothetical driving conditions for a specific use. The cor-
esponding duty cycle will become a useful ReBUS for battery
esting on a laboratory test stand, mimicking real-life operation,
imilar to a dynamometer testing of a vehicle using a stan-
ard driving schedule such as the federal urban driving schedule
FUDS).

Fig. 11 illustrates an exemplified summary of the analyses
iscussed so far in this work. It displays a series of 600 s aggres-
ive city driving. The driving pulses are very short and the
aximum speed does not exceed 50 km h−1, representing a trip

omposition only with stop-and-go and urban driving. In this
rip there are three acceleration periods that exhibit very high
eak power pulses, thus an aggressive driving after all.

The driving pattern and PPP analyses give us an entry to
he correlation of vehicle and battery usage. The detailed usage
atterns for the vehicle and battery pack will allow us assess
he impacts from the operating conditions on the battery perfor-

ance. The quantification of these usage patterns also allow us
ynthesize arbitrary driving cycles for the vehicle and the asso-
iated duty cycles for the battery, which in turns can allow us
onduct more realistic testing and evaluation. This approach can
elp vehicle and battery design via high fidelity simulations. In
he following section, we shall explain how to perform battery

odeling and simulation for life prediction.

.2. Battery simulation and life prediction

An equivalent circuit battery model (Fig. 12) can be a useful,
et simple and realistic, tool for predicting battery performance
r even life [11]. The parameterization of the model can be
s simple as those based on the Ohmic and Faradic behavior
s determined by electrochemical impedance measurements to

ield a set of reliable parameters, including rate dependence
12], for battery simulation. It is worth noting that since these
arameters can be easily determined from laboratory testing, the
quivalent circuit model is convenient to be used and validated.
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Fig. 12. An equivalent circuit model for battery simulation.
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Vehicles 3 (2005) 657.
[10] B.Y. Liaw, M. Dubarry, J. Power Sources 174 (2007) 76.
[11] B.Y. Liaw, R.G. Jungst, G. Nagasubramanian, H.L. Case, D.H. Doughty,
Fig. 13. Comparison of simulated and field-tested cell voltage profile.

nce the change of the parameters, primarily the resistance, with
ife is characterized through accelerated life testing, the battery
ife can thus be predicted for a duty cycle.

.3. Model validation

Once a satisfactory laboratory model is obtained, it is pos-
ible to predict battery life based on duty cycle characteristics,
ncluding standard test schedules. There are at least two schemes
f validation we can pursue. One is to use laboratory test results
ased on standardized procedures [8]. For instance, we can use
hose tested by the DST/RPT protocols (Fig. 3) to validate the

odel prediction. Another important one is to simulate battery
erformance based on data collected in the field, even at different
tages of battery life [12]. Fig. 13 presents a simulated volt-
ge excursion of a battery (solid line) versus the field-recorded
ata (×) for a trip that resembles the ReBUS derived from the
atabase. A comparison between simulated and trip data shows
hat, even with some discrepancies, the simulation works quite
ell for a real trip. The fidelity of the simulation will warrant a
etter prediction of battery life.

. Conclusion

We have illustrated that combining laboratory and field tests
e can gain much more insights of the battery performance

hrough careful data collection, analysis and interpretation, mod-

ling and simulation, and finally, cross validation. Driving and
uty cycle analysis, with fuzzy-logic pattern recognition tech-
iques, allows us to build driving pulse and power pulse based
building blocks” to make the connection between field and

[

Sources 174 (2007) 366–372

aboratory tests. With this approach, we can establish a better
nderstanding of battery performance under real-life usage. Via
igh fidelity modeling, we can then predict the battery life more
ccurately.

It is important to mention that the purpose of our driving and
uty cycle analyses is to derive a collective set of building blocks
hat have been validated as a modular unit for synthesis of driving
nd duty cycles. This is the basis for constructing ReBUS for
ny hypothetical driving cycle that can be used for any regional
r general-purpose applications to evaluate vehicle or battery
erformance. Once a hypothetical driving cycle can be defined
or any application, we can synthesize a duty cycle as a ReBUS
or testing on either a battery test station or a dynamometer
ith a drivetrain. Battery service life under this ReBUS can be

valuated in the laboratory to mimic real-life situations.
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